有限元特征值计算中的子空间二次解耦算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12286/szjs.s2021-0738

有限元特征值计算中的子空间二次解耦算法

引用
解线性方程组预条件子算法已在求解偏微分方程(PDE)的离散代数系统的高性能计算中取得巨大成功.相比之下,PDE特征值问题本身的高效快速并行的潜力目前远未发挥,根据代数基本定理可知,通过因式分解,任意一个一元n次实特征多项式可分解为若干个低次实多项式(如二次)或一次实多项式的乘积,因此,利用PDE方程的特征变换(如Fourier变换等)作预变换有可能把离散的高阶广义特征值问题直接解耦分解为一批低阶广义矩阵特征值的并行计算,本文以三次Hermite插值有限元为例,提出求解一类离散椭圆PDE广义特征值的二次解耦算法.新算法不但降低了常规算法(先把广义特征值问题化为普通特征值问题,再分解为n个一次多项式乘积)的计算复杂度,性能提升明显,而且能有效判别与防止伪特征值的出现(Spurious free无伪解).

离散PDE特征值问题、有限元特征值计算、二次解耦算法、矩陈广义相似、Spurious free无伪解

42

国家重点研发计划高性能计算重点专项2016YFB0200601

2021-07-14(万方平台首次上网日期,不代表论文的发表时间)

共22页

104-125

相关文献
评论
暂无封面信息
查看本期封面目录

数值计算与计算机应用

1000-3266

11-2124/TP

42

2021,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn