基于改进集成学习的测井岩性识别方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-1441.2023.02.003

基于改进集成学习的测井岩性识别方法研究

引用
测井数据中存在大量与岩性无关的冗余信息,且各类岩性标签数据分布不均匀,严重影响岩性识别准确率,现有测井岩性识别算法无法有效解决岩性类间不平衡问题.为此提出了一种针对不平衡样本集的集成学习岩性预测方法KSMOSEL:首先以录井岩性数据为岩性样本标签,将测井曲线作为模型输入;然后将K-means算法与合成少数类过采样技术(SMOTE)相结合形成K-means-合成过采样算法,即KS采样算法,对岩性样本集进行平衡化处理;最后将采样后的数据集用于构建集成学习模型并训练,采用多个分类器模型融合构成强学习器,通过"软投票"方式预测岩性类型.以Hugoton油气田测井岩性数据为基础,采用改进不平衡样本集的集成学习岩性预测方法对岩性进行分类,并将识别效果与传统的分类模型:支持向量机、K最近邻分类、决策树、XGBoost和随机森林等模型进行对比.试验结果表明:KSMOSEL方法具有更高的精度,岩性识别准确率达到94.28%;KS采样之后,支持向量机、K最近邻分类、决策树、XGBoost、随机森林、GBDT和集成学习等模型岩性识别准确率分别提高了 18.68%,12.03%,3.77%,10.23%,24.77%,16.69%,19.37%,在测井岩性数据分布比例不平衡时极大地提升了岩性识别的准确率.

岩性识别、非平衡数据、过采样、KSMOSEL、测井数据

62

P631

国家重点研发计划;四川省科技项目

2023-04-04(万方平台首次上网日期,不代表论文的发表时间)

共13页

212-224

相关文献
评论
暂无封面信息
查看本期封面目录

石油物探

1000-1441

32-1284/TE

62

2023,62(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn