基于随机森林和支持向量机模型的期刊评价
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-5862.2022.02.014

基于随机森林和支持向量机模型的期刊评价

引用
学术研究的质量评价离不开学术期刊评价,学术期刊评价体系的公平与学术公平息息相关,因而加强对学术期刊的研究和评价是很有必要的.近年来,机器学习算法得到广泛应用,但之前未见学者将机器学习算法应用于期刊评价.应用机器学习算法中的随机森林和支持向量机模型做出期刊排名评价模型,进而推进期刊评价的发展是很有意义的尝试.以中国科技期刊引证报告中人文社会科学期刊为例,在应用非线性评价方法TOPSIS评价得出的排名基础之上建立随机森林和支持向量机模型,再对比2种模型的精准度.研究表明,随机森林期刊评价模型比支持向量机期刊评价模型准确度更高,其排名结果也与主观预期排名更接近.

学术期刊、期刊评价、随机森林、支持向量机

40

C812;TP181;G23(统计方法)

辽宁省科技厅自然科学基金资助项目20180550996

2022-07-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

174-179

相关文献
评论
暂无封面信息
查看本期封面目录

沈阳师范大学学报(自然科学版)

1673-5862

21-1534/N

40

2022,40(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn