10.3969/j.issn.1000-1700.2020.02.013
基于光谱特征参数的粳稻冠层氮素含量反演方法
粳稻氮素含量的快速、无损、准确估算,可以及时掌握粳稻的生长状况,对指导粳稻田间管理具有重要意义.为提高粳稻冠层氮素含量的高光谱反演精度,利用沈阳农业大学路南试验基地2018年粳稻3个关键生育期无人机高光谱影像和同步测定的粳稻冠层氮素含量作为数据源,选用从粳稻冠层光谱中提取的高光谱位置变量、面积变量和植被指数变量3种类型20个光谱特征参数与氮素含量进行相关性分析,选出各个生育期内相关性较高的前3个光谱特征参数作为模型输入分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)和思维进化算法优化BP神经网络(MEA-BPNN)3种粳稻冠层氮素含量反演模型并验证.结果表明:在粳稻分蘖期、拔节期、抽穗期,与粳稻氮素含量相关性最好的高光谱特征参数均为红边面积SDr,相关系数分别为0.771,0.664,0.775;MEA-BPNN反演模型与PLSR、BPNN相比,无论在模型精度还是预测能力都有明显提高,在各个生育期,MEA-BPNN模型的建模集和验证集决定系数R2均达到0.700以上,RMSE均低于0.400以下,说明MEA-BPNN反演模型是筛选出的最佳粳稻冠层氮素含量反演模型.综上研究,该模型能够快速无损反演粳稻冠层氮素含量,可为后续施肥决策提供支持.
粳稻、氮素含量、无人机遥感、光谱特征参数、思维进化算法优化BP神经网络
51
S511(禾谷类作物)
国家重点研发计划项目2016YFD020060307
2020-05-11(万方平台首次上网日期,不代表论文的发表时间)
共7页
218-224