10.3969/j.issn.1000-1700.2018.02.017
柑橘表面缺陷图像快速准确分割方法
柑橘表面缺陷会严重影响水果的品质和食用安全,柑橘表面缺陷进行检测对于提高水果品质、提升水果价值有着重要意义.LBF(local binary fitting)是一种基于Chan-Vese(CV)模型的局部化的图像分割模型.由于传统的LBF模型存在对于初始轮廓线的位置要求高且抗噪能力差,对于灰度不均匀图像分割效果欠佳的问题,通过在原LBF模型基础上,添加一个核函数(高斯函数)和线性水平集的方法,对LBF模型进行了改进.针对柑橘表面常见缺陷(虫伤、腐烂、炭疽、药伤)的图像分割问题,采用改进的LBF模型进行试验,来验证改进后的LBF模型对柑橘表面四种常见缺陷能否进行有效的分割提取.通过对虫伤果、腐烂果、炭疽果、药伤果四组样本分别进行分组试验,结果表明:改进后的LBF模型对于虫伤果、腐烂果、炭疽果、药伤果的表面缺陷能够进行快速的识别,分割效果好并能得到与缺陷图像相对应的水平集演化图像.具有迭代次数少、分割时间短、对初始轮廓位置不敏感、分割轮廓线更加光滑和完整、缺陷边界识别准确等优点,有效地解决了传统LBF模型的不足.试验验证了改进后的LBF模型适用于四种柑橘表面缺陷的分割提取,具有可行性、快速性和准确性,为柑橘表面缺陷的识别与柑橘在线检测提供参考.
柑橘表面缺陷、柑橘图像分割、LBF模型、水平集
49
S24.1;TP391.41(农业电气化与自动化)
黑龙江省自然科学基金项目C201208
2018-06-12(万方平台首次上网日期,不代表论文的发表时间)
共8页
242-249