基于支持向量自回归的水泵振动预测模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-1700.2008.06.016

基于支持向量自回归的水泵振动预测模型研究

引用
为了预测水泵在运行中的振动状态,提高水泵运行的安全性和经济性,采用了统计学习理论中的核心算法--支持向量机与自回归方法相结合,建立了水泵振动预测模型(SVAR).并通过实例,与基于灰色理论建立的预测模型(GM)和基于自回归方法建立的预测模型(AR)进行了比较.结果表明:基于支持向量自回归的水泵振动预测模型(SVAR)具有精度高、速度快、易于建模的特点.应用该方法建立的预测模型能够很好地预测水泵运行中的振动情况.有效地避免水泵运行中由振动引起的故障.

支持向量机、统计学习理论、水泵、振动预测

39

TK262(蒸汽动力工程)

水利部"948"科技创新项目CT200516;辽宁省教育厅科技公关项目05L385

2009-03-11(万方平台首次上网日期,不代表论文的发表时间)

共5页

708-712

相关文献
评论
暂无封面信息
查看本期封面目录

沈阳农业大学学报

1000-1700

21-1134/S

39

2008,39(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn