基于改进CNN和ViT网络的复合工况示功图诊断技术研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-5285.2022.04.023

基于改进CNN和ViT网络的复合工况示功图诊断技术研究

引用
传统卷积神经网络在抽油机故障诊断领域中,面向单一工况示功图诊断已取得较好精度,但在处理复合工况示功图时,诊断精度仍较低.论文研究了改进卷积神经网络(CNN)和视觉Transformer(ViT)的复合工况示功图诊断技术,设计了融合ViT和非方卷积核的混合CNN结构,更有效地提取复合工况示功图特征.首先通过三元组损失对网络进行训练,使用训练完成的网络建立示功图特征检索库,再将示功图特征与检索库中特征计算相似度向量以实现诊断.实验结果表明,混合网络结构在测试集上诊断精度达95%以上,优于传统CNN模型,有效提升了复合工况示功图诊断精度.

卷积神经网络、示功图、故障诊断、视觉Transformer

41

TE933.1(石油机械设备与自动化)

江苏省重点研发计划项目;南京江北新区重点研发计划高端原油调合调度一体化系统软件研发

2022-06-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

105-110

相关文献
评论
暂无封面信息
查看本期封面目录

石油化工应用

1673-5285

64-1058/TE

41

2022,41(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn