基于改进局部自注意力机制的VMD-GRU模型短期风电功率预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-3814.2023.03.011

基于改进局部自注意力机制的VMD-GRU模型短期风电功率预测

引用
较高的随机波动性使得风电功率的预测十分困难.为改善风电功率预测的效果,建立了一种基于变分模态分解(variational mode decomposition,VMD)、改进局部自注意力机制(Improved Local Self-Attention,ILSA)和门控循环单元网络(gated recurrent unit,GRU)的短期风电功率预测方法.使用VMD分解将原始风电功率序列分解为中心频率不一的子模态;对各子模态的中心频率分别建立具有不同高斯偏置优化窗口大小的ILSA模型,并改进其注意力分数公式以更有效地提取信息;采用GRU模型进行风电功率预测,并对各预测序列进行重组,得到最终的预测结果.实验结果表明,相比于各传统模型,所提改进方法能有效提高风电功率预测精度,且对于低频分量有更高的拟合度.

风电功率预测、变分模态分解、自注意力机制、门控循环单元

39

TM614(发电、发电厂)

国家自然科学基金U1802271

2023-04-19(万方平台首次上网日期,不代表论文的发表时间)

共10页

83-92

相关文献
评论
暂无封面信息
查看本期封面目录

电网与清洁能源

1674-3814

61-1474/TK

39

2023,39(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn