融合双重注意力机制的多源深度推荐模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15983/j.cnki.jsnu.2023026

融合双重注意力机制的多源深度推荐模型

引用
针对评分数据稀疏导致协同过滤算法推荐质量下降的问题,通过充分挖掘评论信息增强推荐性能,提出了一种融合双重注意力机制的多源深度推荐模型(MSDA).该模型基于评分数据、用户评论集和商品评论集3个信息源进行推荐,结合卷积神经网络和双重注意力机制挖掘评论文本特征,利用神经因子分解机进行评分和评论特征之间的高阶非线性交互,从而实现评分预测.实验结果表明,相比于NeuMF、NARRE、HRDR等先进基准方法,MSDA显著提升了模型的评分预测性能.

数据稀疏性、评论文本、深度学习、评分预测

51

TP391(计算技术、计算机技术)

山西省应用基础研究计划项目;山西省应用基础研究计划项目

2023-09-28(万方平台首次上网日期,不代表论文的发表时间)

共11页

49-59

相关文献
评论
暂无封面信息
查看本期封面目录

陕西师范大学学报(自然科学版)

1672-4291

61-1071/N

51

2023,51(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn