10.15983/j.cnki.jsnu.2017.01.113
最大化ROC曲线下面积的不平衡基因数据集差异表达基因选择算法
针对ARCO(AUC and rank correlation coefficient optimization)算法在进行两类问题特征选择时,采用斯皮尔曼等级相关系数度量已选特征子集冗余性带来信息损失和特征相关性与冗余性度量取值范围不一致的缺陷,提出改进的Pearson相关系数度量特征冗余性,并归一化特征相关性和冗余性度量范围,得到APCO(AUC and improved Pearson correlation coefficient optimization)算法以克服ARCO算法的不足.同时,针对实现多类特征选择的MAUCD(using MAUC as the relevance metric to rank features directly)和MDFS(MAUC decomposition based feature selection method)算法没有考虑特征冗余,且MDFS易选择到局部最优特征子集的问题,提出适于多类问题的改进Pearson相关系数度量特征冗余性,得到基于mRMR (maximal relevance-minimal redundancy)框架的MAUCP和MDFSP算法,克服MAUCD和MDFS算法的缺陷.以SVM、NB和KNN为分类工具,构造基于所选特征子集的相应分类器,以其AUC(MAUC)值度量相应特征子集的性能.7个二类和3个多类不平衡基因数据集的实验结果表明:提出的APCO、MAUCP和MDFSP算法分别优于ARCO、MAUCD和MDFS算法,也优于其他经典基因选择算法.
基因选择、差异表达基因、AUC、mRMR、不平衡数据
45
TP181.1(自动化基础理论)
陕西省科技攻关项目2013K12-03-24;国家自然科学基金61673251;中央高校基本科研业务费专项资金GK201503067
2017-04-24(万方平台首次上网日期,不代表论文的发表时间)
共10页
13-22