采用近红外光谱技术的燕麦脂肪含量检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15983/j.cnki.jsnu.2016.04.147

采用近红外光谱技术的燕麦脂肪含量检测

引用
以93份燕麦样品为研究对象,对其近红外光谱数据进行预处理后通过主成分分析法提取光谱特征,采用人工神经网络技术建立燕麦中脂肪含量的合理检测模型。结果表明:反向多元散射处理(IMSC)、数学处理选择2441(即对光谱进行导数间隔点为4的二阶导数处理,一次平滑处理间隔点为4,不进行二次平滑处理)为最佳预处理方法;通过主成分分析法提取2个主成分作为原始信息的特征变量,建立的人工网络模型结构为2-17-1,该模型对验证集的测定值与预测值的相关系数为0.9623,均方根误差为1.6072,模型的预测准确性较好。该方法简便、快速,为燕麦脂肪的定量测定提供了一种新方法。

BP神经网络、脂肪含量、近红外光谱、燕麦、主成分分析法、光谱预处理

44

TS210.3(食品工业)

国家燕麦荞麦产业技术体系CARS-08-D;陕西省科技统筹计划重点项目2015KTZDNY01-07

2016-08-12(万方平台首次上网日期,不代表论文的发表时间)

共6页

119-124

相关文献
评论
暂无封面信息
查看本期封面目录

陕西师范大学学报(自然科学版)

1672-4291

61-1071/N

44

2016,44(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn