一种改进的粒子群优化算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15983/j.cnki.jsnu.2016.02.124

一种改进的粒子群优化算法

引用
在粒子群优化算法的基础上,将粒子群优化算法的速度更新公式中种群最优位置用所有个体的平均值与最优粒子有限邻居个体的平均值加权求和代替;通过将种群平均适应度和整体最优位置适应度的比值作为适应度函数,并引入了加速系数;得到改进的粒子群优化聚类算法既能够充分参考当前粒子的最优信息,也参考了所有个体的最优信息和当前最优粒子有限邻居的最优信息,在进化过程中可以通过新的适应度函数自适应地调整全局搜索和局部搜索的比重对粒子的影响,对算法收敛速度影响较小的前提下较好地提高了收敛精度.最后,选取了4组具有不同分布特征的Benchmark函数作为验证函数,试验结果表明,新算法具有较好的收敛特性.

粒子群优化算法、适应度、更新、收敛速度、收敛精度

44

TP18(自动化基础理论)

陕西省重点科技创新团队项目2014KTC-18;陕西省自然科学基金重点项目2014JZ021;陕西省自然科学基金2014JM8353

2016-08-04(万方平台首次上网日期,不代表论文的发表时间)

共6页

15-20

相关文献
评论
暂无封面信息
查看本期封面目录

陕西师范大学学报(自然科学版)

1672-4291

61-1071/N

44

2016,44(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn