关于Banach空间中p阶框架
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

关于Banach空间中p阶框架

引用
引入并研究了Banach空间X中的p阶Bessel列、p阶框架、p阶独立框架、p阶紧框架与p阶Riesz基.证明了:X中全体p阶Bessel列构成一个Banach空间BpX,X中的任一序列f={fn}n∈Λ是p阶Bessel列当且仅当 c>0使得 {cn)∈lq有 ,空间BpX与算子空间B(X*,lp)是等距线性同构的.应用算子论方法,证明了p阶Bessel列f={fn}n∈Λ是p阶框架当且仅当算子Tf是下有界的,它是独立的当且仅当算子Tf是可逆的,以及独立的p阶框架与p阶Riesz基是一致的.最后,证明了Banach空间X具有p阶Riesz基当且仅当存在X上与原有范数等价的范数‖·‖0,使得(X,‖·‖0)等距同构于lq.

Banach空间、p阶Bessel列、p阶框架、P阶Riesz基

37

O177.1(数学分析)

国家自然科学基金资助项目10571113,10871224

2011-11-09(万方平台首次上网日期,不代表论文的发表时间)

共6页

5-10

相关文献
评论
暂无封面信息
查看本期封面目录

陕西师范大学学报(自然科学版)

1672-4291

61-1071/N

37

2009,37(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn