集值逆Superpramart的逆上鞅逼近
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1672-4291.2006.04.006

集值逆Superpramart的逆上鞅逼近

引用
假定(X,‖·‖)为实可分的Banach空间,X*为其对偶空间,(Ω,(A),P)为完备的概率空间,{(B)n,n≤-1}为上升子σ-域族.讨论了随机集族本性上确界的性质,给出了集值逆Superpramart的逆上鞅逼近及集值逆上鞅在Kuratowski意义下的收敛定理.以此为基础,利用支撑函数证明了集值逆Superpramart在Kuratowski意义与Kuratowski-Mosco意义下的收敛定理,解决了集值逆Superpramart的收敛性问题.

集值逆Superpramart、集值逆上鞅、随机集、Kuratowski-Mosco收敛

34

O21(概率论与数理统计)

国家自然科学基金60274055

2007-01-29(万方平台首次上网日期,不代表论文的发表时间)

共4页

25-28

相关文献
评论
暂无封面信息
查看本期封面目录

陕西师范大学学报(自然科学版)

1672-4291

61-1071/N

34

2006,34(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn