改进的粒子群算法及在CVaR模型中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

改进的粒子群算法及在CVaR模型中的应用

引用
为了求解带有条件风险价值(CVaR)约束的均值-方差模型,提出一种基于广义学习和柯西变异的粒子群算法(CCPSO).在CCPSO算法中,为了提升种群跳出局部最优解的能力,引入一种广义学习策略,提升粒子向最优解飞行的概率;并引入一种动态变异概率,对粒子自身最优位置进行柯西变异,更好地引导种群的飞行;最后,根据全局最优粒子的运行状况,每间隔若干代对其进行变异,以产生全局新的领导者.在基准函数测试中,结果显示CCPSO算法有较好的运行结果.在CVaR模型投资组合优化中,与其它算法相比,CCPSO算法所获结果是有效的,并且优于其它算法.

广义学习、粒子群算法、柯西变异、条件风险价值(CvaR)

41

TP3;TM7

贵州教育厅社科项目0705204,10ZC077;遵市科技局项目[2008]21

2012-01-15(万方平台首次上网日期,不代表论文的发表时间)

共9页

139-147

相关文献
评论
暂无封面信息
查看本期封面目录

数学的实践与认识

1000-0984

11-2018/O1

41

2011,41(17)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn