基于EIEMD-IMDE-XGBoost模型的短期电力负荷预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1671-0320.2020.02.002

基于EIEMD-IMDE-XGBoost模型的短期电力负荷预测

引用
为解决短期电力负荷精准预测问题,提出了基于EIEMD-IMDE-XGBoost模型的预测新方法.针对传统的经验模态分析方法存在的模态混叠及端点效应等问题,提出集合干扰重构经验模态分解算法对电力负荷监测数据进行预处理,可将原始数据分解为多个平稳分量.为避免传统多尺度散布熵算法计算不稳定的问题,提出改进多尺度散布熵算法用于刻画电力负荷监测数据的内在特征.结合各有效平稳分量的散布熵值构造特征向量,并输入到参数优化的XGBoost模型中实现负荷预测.实际案例验证表明,该方法具有较高的预测精度和较强的适应能力,对于电力系统负荷预测具有一定的参考借鉴价值.

电力负荷预测、集合干扰重构经验模态分解、改进多尺度散布熵、XGBoost模型

TM715+.1(输配电工程、电力网及电力系统)

2020-05-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

9-14

相关文献
评论
暂无封面信息
查看本期封面目录

山西电力

1671-0320

14-1293/TK

2020,(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn