基于精神影像和人工智能的抑郁症客观生物学标志物研究进展
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16476/j.pibb.2019.0025

基于精神影像和人工智能的抑郁症客观生物学标志物研究进展

引用
抑郁症是当今社会上造成首要危害且病因和病理机制最为复杂的精神疾病之一,寻找抑郁症的客观生物学标志物一直是精神医学研究和临床实践的重点和难点,而结合人工智能技术的磁共振影像(magnetic resonance imaging,MRI)技术被认为是目前抑郁症等精神疾病中最有可能率先取得突破进展的客观生物学标志物.然而,当前基于精神影像学的潜在抑郁症客观生物学标志物还未得到一致结论.本文从精神影像学和以机器学习(machine learning,ML)与深度学习(deepleaming,DL)等为代表的人工智能技术相结合的角度,首次从疾病诊断、预防和治疗等三大临床实践环节对抑郁症辅助诊疗的相关研究进行归纳分析,我们发现:a.具有诊断价值的脑区主要集中在楔前叶、扣带回、顶下缘角回、脑岛、丘脑以及海马等;b.具有预防价值的脑区主要集中在楔前叶、中央后回、背外侧前额叶、眶额叶、颞中回等;c.具有预测治疗反应价值的脑区主要集中在楔前叶、扣带回、顶下缘角回、额中回、枕中回、枕下回、舌回等.未来的研究可以通过多中心协作和数据变换提高样本量,同时将多元化的非影像学数据应用于数据挖掘,这将有利于提高人工智能模型的辅助分类能力,为探寻抑郁症的精神影像学客观生物学标志物及其临床应用提供科学证据和参考依据.

抑郁症、脑成像、精神影像学、人工智能、机器学习、深度学习、生物学标志物

46

B84;B845.1;R74(心理学)

国家自然科学基金;四川省科技厅应用基础研究项目;四川省卫生和计划生育委员会普及应用项目;四川省卫生和计划生育委员会普及应用项目;中国博士后科学基金;成都医学院四川应用心理学研究中心重点项目

2019-11-08(万方平台首次上网日期,不代表论文的发表时间)

共21页

879-899

相关文献
评论
暂无封面信息
查看本期封面目录

生物化学与生物物理进展

1000-3282

11-2161/Q

46

2019,46(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn