一种融合表达谱相关性信息的激活子网辨识算法
传统表达谱数据分析方法集中于寻找差异表达基因和共表达基因集合,没有考虑基因表达产物之间已知的相互作用.近年来在系统生物学的研究中发展了将基因表达谱与蛋白质相互作用网络进行整合分析的方法.现有方法未能综合考虑基因表达差异性和相关性信息,容易导致辨识结果中重要功能分子缺失且生物学功能相关度不高.提出一种融合表达谱差异性和相关性信息的激活子网辨识算法,能够在蛋白质相互作用网络中辨识高功能相关度的激活子网.应用到人免疫缺陷病毒HIV-1感染过程的研究,结果表明,该算法可以有效避免仅考虑基因表达差异性所引入的偏差,揭示了高相关性低表达差异基因在相关通路中的关键性作用.
激活子网、表达谱、模拟退火算法、最大生成子树
37
Q71;TP39(生物大分子的结构和功能)
科技部科研项目;国家自然科学基金
2010-04-19(万方平台首次上网日期,不代表论文的发表时间)
共10页
208-217