基于SOM-I-SVM耦合模型的滑坡易发性评价
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16030/j.cnki.issn.1000-3665.202206041

基于SOM-I-SVM耦合模型的滑坡易发性评价

引用
在使用机器学习模型对滑坡进行易发性评价时,通常会在滑坡影响范围之外随机选取非滑坡样本点,具有一定的误差.为了提高滑坡易发性评价的精度,将自组织映射(self-organizing map,SOM)神经网络、信息量模型(information,I)以及支持向量机模型(support vector machine,SVM)进行耦合,提出一种基于SOM-I-SVM模型的滑坡易发性评价方法,并将SOM神经网络与K均值聚类算法进行对比,验证模型的可靠性.以十堰市茅箭区为例,首先通过对环境因子的相关性及重要性分析,筛选出距水系距离、坡度、降雨量、距构造距离、相对高差、距道路距离、地层岩性等 7 个因子,建立滑坡易发性评价指标体系,在此基础上计算出各因子的分级信息量值,并作为模型的输入变量进行滑坡易发性评价.分别采用SOM神经网络和K均值聚类算法选取非滑坡样本,然后将样本数据集代入I-SVM模型预测滑坡易发性.将SVM、I-SVM、KMeans-I-SVM、SOM-I-SVM等 4 种模型预测精度进行对比,其ROC曲线下面积(AUC)分别为 0.82,0.88,0.90,0.91,说明SOM-I-SVM模型能有效提高滑坡易发性预测准确率.

滑坡、易发性评价、信息量模型、支持向量机、自组织映射神经网络

50

P642.22(水文地质学与工程地质学)

湖北省科技厅研发项目2021BCA219

2023-05-25(万方平台首次上网日期,不代表论文的发表时间)

共13页

125-137

相关文献
评论
暂无封面信息
查看本期封面目录

水文地质工程地质

1000-3665

11-2202/P

50

2023,50(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn