南江滑坡群体积的BP神经网络模型与预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16030/j.cnki.issn.1000-3665.2015.01.23

南江滑坡群体积的BP神经网络模型与预测

引用
基于南江县境内244个典型土质滑坡统计样本,利用BP神经网络模型,采用3种不同的方案(基于不同的评价参数)对滑坡体积进行预测.方案一选取坡高、坡度、坡向、高程、植被覆盖率、岩层倾向、岩层倾角等7项评价参数;方案二选取坡高、坡度、坡向、岩层倾向、岩层倾角等5参数;方案三选取坡高、坡度、坡向等3参数.研究结果表明:3种方案建立的BP神经网络模型都具有较高的可靠性,其预测结果都可以较好地逼近真实滑坡体积值,BP神经网络能有效应用到滑坡体积预测中;3种方案预测值与实际值基本吻合,且两者间的相关系数分别为0.87083,0.90826,0.86119,评价参数的合理选择对滑坡体积预测的准确性有着重要的影响;方案二的相关系数最高,其预测准确性最好,这表明坡高、坡度、坡向、岩层倾向、岩层倾角是影响滑坡体积的重要因素,植被覆盖率和高程为其次要影响因素.

滑坡、体积、评价参数、BP神经网络

42

P642.22(水文地质学与工程地质学)

国家重点基础研究发展计划973计划2013CB733200、2014CB744703;教育部“长江学者奖励计划”T2011186

2015-02-11(万方平台首次上网日期,不代表论文的发表时间)

134-139

相关文献
评论
暂无封面信息
查看本期封面目录

水文地质工程地质

1000-3665

11-2202/P

42

2015,42(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn