基于AGA的SVM需水预测模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-0852.2008.01.009

基于AGA的SVM需水预测模型研究

引用
需水预测是一个由城市人口、工业水平、社会经济水平共同作用的多因素、多层次的复杂非线性系统.其结果将直接影响受区域水资源承载力约束的产业结构、布局形态等决策.作为一种集中参数预报方法,支持向量机方法具有对未来样本的较好的泛化性能,对于这类资料缺乏、系统结构尚欠清晰的问题可以取得较好的模拟和预测结果.基于此,本文将支持向量机方法引入需水预测领域,建立了需水预测支持向量机模型.同时,本文将加速遗传算法和支持向量机方法耦合起来,构造了支持向量机模型参数的自适应优化算法.模型在珠海市的应用实例表明:与简单遗传算法比较,AGA的模型参数寻优效率更高;与BP神经网络模型相比,SVM模型较好地解决了小样本、经验性等问题,并取得了较高的预测精度.

需水预测、支持向量机、加速遗传算法、BP神经网络

28

P338(水文科学(水界物理学))

国家自然科学基金50579078;广东省自然科学基金04009805;广东省自然学基金7300513

2008-05-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

38-42,46

相关文献
评论
暂无封面信息
查看本期封面目录

水文

1000-0852

11-1814/P

28

2008,28(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn