基于中分辨率TM数据的湿地水生植被提取
利用湿地水生植被生长旺盛、光谱反射较强、光谱信息比较丰富的8月份中分辨率Landsat TM和ETM+多光谱遥感影像,采用面向对象的分类方法,进行野鸭湖湿地水生植被的提取.研究表明:在提取过程中,通过对原始影像进行主成分变换和穗帽变换,将主要信息与噪声分离,不仅减小了数据冗余和波段间的相关性,而且增大了影像上湿地水生植被与其他地物类型光谱和空间信息的差异性,并结合野外水生植被光谱特征分析,选择归一化植被指数NDVI与归一化水体指数NDWI辅助分类,构建特征波段或波段组合,然后,确定适当的隶属度函数和阈值范围,构建分类决策树,完成湿地水生植被的自动分类,提高了影像分割与面向对象分类的精度,取得了较为理想的湿地水生植被提取结果.2002年和2008年两景影像的总体分类精度分别达到86.5%和85.44%,表明中分辨率TM影像可以满足湿地水生植被提取的需要,又因为其具有较高的波谱分辨率、极为丰富的信息量、相对较低的价格、长时间序列,可以作为近20a湿地水生植被提取和动态变化监测的主要数据源.
面向对象分类、中分辨率遥感影像、水生植被、信息提取、北京野鸭湖湿地
30
TP7;P23
人类影响下的中国与南非典型区域生态水文变化对比研究2010DFA92400;北京市科技计划项目D08040600580801;北京市教委资助项目
2015-10-21(万方平台首次上网日期,不代表论文的发表时间)
共10页
6460-6469