小麦霉菌污染支持向量机判别模型的建立
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12161/j.issn.1005-6521.2021.18.020

小麦霉菌污染支持向量机判别模型的建立

引用
为建立一种快速判别小麦霉菌污染的方法,该研究采用近红外光谱技术结合化学计量学方法,以126份小麦样品为研究对象,通过剔除异常样品、光谱降维和预处理,采用支持向量机分类(support vector machine classification,SVM)方法建立判别模型.结果表明:运用基于马氏距离的主成分分析方法剔除异常样品5个,将原始光谱数据进行降维处理得到8个主成分,能够代表原始样本的98.80%.输入变量的最佳预处理方式为标准正态变量变换,最佳核函数为linear,核函数参数C值为10,SVM判别模型的训练集判别正确率为100%,交叉验证判别正确率为98.89%.用未参与建立判别模型的外部验证集样品对SVM判别模型进行验证,结果表明:SVM判别模型对外部验证集样品的判别正确率为100%.该研究所建立的SVM判别模型可以用于小麦霉菌污染的快速检测.

近红外光谱;小麦;霉菌;判别;支持向量机

42

贵州省农业科学院课题;贵州省科技计划项目

2021-10-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

136-141

相关文献
评论
暂无封面信息
查看本期封面目录

食品研究与开发

1005-6521

12-1231/TS

42

2021,42(18)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn