基于深度卷积自编码器的单样本人脸识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于深度卷积自编码器的单样本人脸识别

引用
单样本人脸识别问题是人脸识别问题中的难点问题,由于样本数少,现有的人脸识别算法在处理单样本人脸识别问题时,识别效果会显著降低.本文提出一种基于深度卷积自编码器的单样本人脸识别算法.算法采用深度卷积自编码器将多样本个体的类内变化迁移至单样本个体,重构出单样本个体包含类内变化的新图像,从而提高识别率.算法在公共测试库上进行了测试,实验结果表明,该算法能够重构出单样本个体包含其他类内变化的人脸图像,同时,识别率优于原图的识别率.

人脸识别算法、识别率、类内变化、人脸图像、识别问题、多样本、变化迁移、难点问题、测试库、实验结果

TP391.41;TN912.34;TP181

2020-09-11(万方平台首次上网日期,不代表论文的发表时间)

共2页

49-50

相关文献
评论
暂无封面信息
查看本期封面目录

数码世界

1671-8313

12-1344/TP

2020,(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn