梯级水库群多目标优化调度模型及CPF-DPSA算法研究
梯级水库群多目标联合优化调度是水能资源高效利用的重要研究内容,现有水库群多目标优化调度模型及求解算法的通用性亟待提高.在总结现有三种目标函数型式(累积值、极值及百分比)的基础上,以梯级总发电量最大、最小出力最大和生态断面用水保证率最大为目标,建立了具有普适性的梯级水库群多目标优化调度模型,提出了求解该模型的基于惩罚因子的动态规划逐次逼近算法(CPF-DPSA),探究了各目标与对应惩罚系数之间的变化关系,确定了各惩罚系数的影响范围,获得了分布较为均匀和广泛的非劣解集.老挝南欧江梯级水库群应用表明,该模型具有较好的适用性,CPF-DPSA算法获得的非劣解集分布广泛、均匀.尤其在长系列优化方面,CPF-DPSA算法在结果精度、非劣解质量和非劣解分布等方面比第三代快速非劣排序遗传算法(NSGA-Ⅲ)表现出更好的性能.
梯级水库群、多目标、CPF-DPSA、惩罚因子、非劣解集
54
TV697.1+2(水利枢纽、水工建筑物)
国家自然科学基金;水电水利规划设计总院项目
2023-02-20(万方平台首次上网日期,不代表论文的发表时间)
共11页
68-78