基于IPSO优化LSSVM的水轮发电机组振动故障诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于IPSO优化LSSVM的水轮发电机组振动故障诊断

引用
提出改进的粒子群算法,并与最小二乘支持向量机相结合,得到基于IPSO-LSSVM的水轮发电机组故障诊断方法.改进后的粒子群算法能较好地调整算法在全局与局部搜索能力之间的平衡,将其应用于LSSVM的参数优化,可以提高故障诊断的精度和效率.实例分析结果表明,本文模型不仅能够取得良好的分类效果,而且诊断速度与精度均高于采用BP神经网络、LSSVM以及PSO-LSSVM等方法,适合在实际工程中应用.

水轮发电机组、振动、故障诊断、最小二乘支持向量机、改进粒子群算法

42

TM312(电机)

霍英东高校青年教师基金101076

2016-01-16(万方平台首次上网日期,不代表论文的发表时间)

共6页

373-378

相关文献
评论
暂无封面信息
查看本期封面目录

水利学报

0559-9350

11-1882/TV

42

2011,42(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn