自组织特征映射神经网络方法在水文分区中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:0559-9350.2005.02.006

自组织特征映射神经网络方法在水文分区中的应用

引用
水文分区问题是模式分类问题的一种,本文采用已被广泛应用于模式分类问题中的自组织特征映射人工神经网络(SOFM网络)方法对江西和福建两省进行水文分区.在水文分区计算中选用了86个水文站点和8个反映流域下垫面因素和水文气候特征的水文因子,利用SOFM神经网络分区方法自动识别子区的个数,较为客观地将江西和福建两省划分为3个水文大区.每个区的平均流域特征与当地的下垫面情况完吻合,同时,对各站点年最大洪峰流量进行计算和精度检验,其基本满足水文站网规划对水文分区的精度要求,表明用SOFM神经网络方法进行水文分区是一种行之有效的方法.

水文分区、SOFM神经网络、水文站网

36

P333.9(水文科学(水界物理学))

2005-04-14(万方平台首次上网日期,不代表论文的发表时间)

共5页

163-166,173

相关文献
评论
暂无封面信息
查看本期封面目录

水利学报

0559-9350

11-1882/TV

36

2005,36(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn