基于遗传学习算法和BP算法的神经网络在矿坑涌水量计算中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:0559-9350.2000.12.011

基于遗传学习算法和BP算法的神经网络在矿坑涌水量计算中的应用

引用
本文采用遗传学习算法和误差反向传播算法(BP)相结合的混合算法来训练前馈人工神经网络(BPN),即先用遗传学习算法进行全局训练,再用BP算法进行精确训练,使网络收敛速度加快和避免局部极小.作为实例,本文将该方法运用于多维时序问题.根据山东省黑旺铁矿的矿坑充水条件建立了一个网络,以矿坑充水的各种控制因素相关资料作为样本,对网络进行训练并用训练好的网络预测矿坑涌水量.网络的训练速度及预测结果表明,该算法收敛速度较快,预测精度很高,为矿坑涌水量预报提供了一种新思路和新方法.

人工神经网络、遗传算法BP算法、黑旺铁矿、矿坑涌水量

P333(水文科学(水界物理学))

中国科学院资助项目49772162

2004-01-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

59-63

相关文献
评论
暂无封面信息
查看本期封面目录

水利学报

0559-9350

11-1882/TV

2000,(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn