基于概率神经网络的欺诈性财务报告的识别研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于概率神经网络的欺诈性财务报告的识别研究

引用
本文探索概率神经网络PNNs(Probabilistic Neural Networks)在构建欺诈性财务报告识别模型方面的有效性,重点探讨了PNN模型变量的选择及平滑参数的确定问题,同时将所提出模型的性能和人工神经网络(ANNs)、logit回归模型的性能进行了比较.结果证明,PNN模型具有很高的预测力,并发现该模型的性能优于ANN模型以及logit回归模型.

概率神经网络、欺诈性财务报告、识别模型

28

O212(概率论与数理统计)

中国博士后科学基金2008043021;教育部社会科学基金05JA910003

2009-04-30(万方平台首次上网日期,不代表论文的发表时间)

共10页

36-45

相关文献
评论
暂无封面信息
查看本期封面目录

数理统计与管理

1002-1566

11-2242/O1

28

2009,28(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn