基于GWO-LSTM的丹江口水库入库径流预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12170/20201103002

基于GWO-LSTM的丹江口水库入库径流预测

引用
入库径流预测对丹江口水库调度及水资源利用具有重要的指示意义.基于灰狼优化算法(GWO)构建不同的预测模型,开展丹江口水库月入库径流预测研究,并探讨网络结构超参数的选取及验证GWO全局遍历性、收敛快的特点.结果表明:灰狼优化的长短期记忆模型(GWO-LSTM)的预测精度和泛化性能优于灰狼优化的人工神经网络模型(GWO-BP)和逐步回归模型,其验证期的纳什效率系数平均达到0.969,整体趋势预测较好,峰值捕捉略有不足,可适用于丹江口水库月入库径流预测;模型超参数依据经验取值时,其预测结果不如GWO优化,验证期的纳什效率系数不足0.5,未达到可接受范围,而且带有一定的偶然性,建议选用具有全局优化特性的优化算法进行超参数选取;验证了GWO算法全局遍历性和收敛快的特点,平均在3次迭代后可达到收敛状态.

长短期记忆模型;径流预测;灰狼优化算法

TV121(水利工程基础科学)

国家重点研发计划;国家自然科学基金

2022-01-14(万方平台首次上网日期,不代表论文的发表时间)

共9页

51-59

相关文献
评论
暂无封面信息
查看本期封面目录

水利水运工程学报

1009-640X

32-1613/TV

2021,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn