基于GA-BP神经网络的粗粒土渗透系数预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16198/j.cnki.1009-640X.2018.06.012

基于GA-BP神经网络的粗粒土渗透系数预测

引用
针对粗粒土渗透性能受颗粒级配、密实程度等因素影响而呈现明显差异,提出一种粗粒土渗透系数预测方法.收集并整理得到93组粗粒土数据,以全级配(d10~d100)和孔隙比作为BP神经网络的输入变量,利用遗传算法优化BP神经网络的初始权值与阀值,构建基于BP神经网络和遗传算法的粗粒土渗透系数预测模型.结果表明:该GA-BP神经网络经过55次迭代之后精度满足要求;87组训练样本预测结果的平均相对误差为5.10%,其中有75%的样本相对误差小于平均相对误差;6组检测样本预测结果的平均相对误差为6.39%,该网络模型泛化性能良好.采用GA-BP神经网络,由全级配和孔隙比能较好地预测粗粒土的渗透系数,且收敛速度、预测精度及泛化性能均优于标准的BP神经网络模型.

粗粒土、渗透系数、BP神经网络、遗传算法、孔隙比、级配

TU411(土力学、地基基础工程)

国家重点研发计划资助项目2017YFC0504902-05;国家自然科学基金项目资助项目51678348,51708333;湖北省自然科学基金重点实验室资助项目2016CFA085

2019-04-03(万方平台首次上网日期,不代表论文的发表时间)

共6页

92-97

相关文献
评论
暂无封面信息
查看本期封面目录

水利水运工程学报

1009-640X

32-1613/TV

2018,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn