基于FOA-RF算法的心墙砾石土压实质量预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3880/j.issn.1006-7647.2023.03.007

基于FOA-RF算法的心墙砾石土压实质量预测模型

引用
针对随机森林(RF)算法预测心墙砾石土压实质量存在决策树数量选取缺乏深入研究和忽视P0.075 质量分数对压实质量影响的问题,提出了一种基于果蝇优化(FOA)算法的随机森林算法(FOA-RF算法),并构建了基于FOA-RF 算法的心墙砾石土压实质量预测模型(FOA-RF 模型).该模型一方面通过对料源参数和干密度进行相关性分析,新增了P0.075 质量分数作为模型的输入参数;另一方面利用FOA算法对随机森林进行优化,解决了RF算法难以取得决策树数量最优解、没有同时考虑决策树数量与随机特征数影响的问题.以西南某在建砾石土心墙堆石坝工程为例,分别应用基于传统RF、BP神经网络、多元线性回归的预测模型和FOA-RF模型进行压实质量预测.结果表明,FOA-RF模型在预测精度上具有优越性,并基于该模型开发压实质量预测模块,将该模块嵌入碾压质量实时监控系统中可实现压实质量的实时预测.

堆石坝、砾石土心墙、压实质量预测、随机森林、果蝇优化算法

43

TV512(水利工程施工)

国家自然科学基金;国家自然科学基金

2023-05-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

42-48

相关文献
评论
暂无封面信息
查看本期封面目录

水利水电科技进展

1006-7647

32-1439/TV

43

2023,43(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn