基于XGBoost的上市公司财务舞弊预测模型研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于XGBoost的上市公司财务舞弊预测模型研究

引用
研究目标:探讨如何利用大数据和机器学习方法对上市公司财务数据和非财务数据进行分析和挖掘,并应用于上市公司财务舞弊识别和预测.研究方法:提出一种基于机器学习方法的上市公司财务舞弊预测模型Xscore,对上市公司财务舞弊进行预测.研究发现:Xscore模型能够提高模型预测的准确率,在准确率、召回率、AUC指标、KS值、PSI稳定性等方面均优于Fscore模型和Cscore模型,更适合我国上市公司财务舞弊预测.研究创新:基于2000~2020年中国上市公司数据集为观测样本,通过Benford定律、LOF局部异常法、IF无监督学习法,解决了机器学习应用于财务舞弊识别研究时普遍面临的灰色样本问题,甄选兼具领域特性和统计特征的特征变量;首次将XGBoost集成学习方法应用到上市公司财务舞弊预测分析中,有效提高了上市公司财务舞弊准确率.研究价值:本文将XG-Boost 集成学习方法引入上市公司财务舞弊识别领域,有助于促进人工智能、机器学习在会计学中的研究与应用,为促进上市公司披露高质量的财务信息和维护资本市场秩序提供参考.

XGBoost、机器学习、财务舞弊、预测模型

39

F239.1;F23(会计)

2022-07-19(万方平台首次上网日期,不代表论文的发表时间)

共21页

176-196

相关文献
评论
暂无封面信息
查看本期封面目录

数量经济技术经济研究

1000-3894

11-1087/F

39

2022,39(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn