上市公司财务舞弊识别模型设计及其应用研究——基于新兴机器学习算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

上市公司财务舞弊识别模型设计及其应用研究——基于新兴机器学习算法

引用
研究目标:运用新兴机器学习的方法预测公司财务舞弊.研究方法:选取11类财务比率指标与文本信息、公司治理、内部控制等非财务指标作为初始输入变量,采用欠采样方法处理训练集样本非平衡的问题,选择轻量梯度提升机算法对公司是否发生舞弊建立分类模型.研究发现:采用轻量梯度提升机算法极大地提升了预测准确性;相对于逻辑回归、支持向量机、随机森林、梯度提升决策树,轻量梯度提升机算法的预测效果最好;使用全部输入变量比仅仅使用有限传统变量的预测能力更强;预测模型在案例分析、行业分析和股价崩盘检测中也展现出很好的预测效果.研究创新:引入新的机器学习算法识别财务舞弊,采用欠采样的方法对训练集样本进行平衡处理,从多个角度进行应用分析.研究价值:有助于实时高效地识别舞弊并及时进行监管,实现对经济运行更为准确的监测、分析、预测、预警,从而提升资本市场的治理效能,促进经济平稳运行.

财务舞弊、机器学习、非平衡样本、应用分析

39

F224.0(经济计算、经济数学方法)

国家自然科学基金;湖南省哲学社会科学基金资助项目

2022-07-19(万方平台首次上网日期,不代表论文的发表时间)

共24页

152-175

相关文献
评论
暂无封面信息
查看本期封面目录

数量经济技术经济研究

1000-3894

11-1087/F

39

2022,39(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn