基于多特征优选的Sentinel-2遥感影像林分类型分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-8023.2023.03.002

基于多特征优选的Sentinel-2遥感影像林分类型分类

引用
为探究Sentinel-2遥感影像林分类型分类的优选特征组合,实现对阔叶林、马尾松林、杉木林和竹林的分类及其效果评价,选取福建省长汀县为研究区,利用Sentinel-2影像提取10个原始波段(O),计算9个光谱指数(S)、7个红边光谱指数(R)和8个纹理特征(Te),以及基于数字高程数据计算2个地形特征指数(To),共计36个特征;利用随机森林算法分析不同特征在林分类型分类中的重要性,并利用袋外样本(Out of Band,OOB)数据与平均不纯度减少方法优选特征组合(Optimum Individuality Combination,OIC);对6种不同试验方案(O、O+To、O+To+S、O+To+S+R、O+To+S+R+Te和OIC)进行林分类型分类,并利用混淆矩阵评价分类结果.结果表明,参与林分类型分类的36个特征的重要性为2.11%~5.43%,其中,海拔因子的重要性最高,红边波段、红边光谱指数、纹理特征中均值与相关性也具有较高的重要性;单独使用原始波段对林分类型进行分类,分类精度不高,总体精度为73.26%,Kappa系数为0.64;以原始波段为基础引入其他特征,除原始波段外,其他特征均可以提高分类精度;优选特征组合(OIC)为重要性前27个特征,包含海拔、8个原始波段、7个红边光谱指数和3个纹理特征,分类精度最高,总体精度为83.13%,Kappa系数为0.77,比其余5种试验方案的总体分类精度提高了0.82%~9.87%.以Sentinel-2影像为数据源,随机森林算法优选的特征组合综合多类型特征中对林分类型分类有重要贡献的特征,从而提高了分类精度.研究结果可为GEE平台Sentinel-2影像在森林资源调查中林分类型信息的提取提供参考.

Sentinel-2、红边光谱指数、随机森林算法、优选特征组合

39

S758;P237(森林经营学、森林计测学、森林经理学)

国家自然科学基金;福建省自然科学基金项目;福建省工程索道工程技术研究中心开放课题基金项目

2023-06-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

12-20

相关文献
评论
暂无封面信息
查看本期封面目录

森林工程

1006-8023

23-1388/S

39

2023,39(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn