基于YOLOv5的林业有害生物检测与识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1006-8023.2022.05.013

基于YOLOv5的林业有害生物检测与识别

引用
林业生态环境监测建设是林业生态健康可持续发展的迫切需求,是森林资源保护、生态文明建设和林业有害生物防控体系提升的关键.快速、准确、有效地检测林业有害生物能够遏制病虫害蔓延,促进森林病虫害综合治理,减轻对林业生产和生态环境建设的危害.为此提出一种深度学习方法,利用当前强大的目标检测算法YOLOv5来实现林业有害生物的检测与识别,针对害虫图像中经常出现重叠和遮挡物体问题,采用DIoU NMS算法对目标框进行选择,增强被遮挡害虫的检测识别准确率.试验结果表明,YOLOv5算法模型能够有效识别数据集中包含的9种林业有害生物,精确度达到了0.973,召回率达到了0.929,均值平均精度(mean Average Precision,mAP)达到了0.942.与YOLOv3和Faster-RCNN相比,mAP比YOLOv3高0.04,比Faster-RCNN高0.087,充分显现出该模型的识别精度高,且实时性好,鲁棒性强.

林业害虫、识别、检测、YOLOv5算法、准确率

38

S763.305(森林保护学)

国家林业;草原局重大应急科技项目;黑龙江省自然科学基金资助项目

2022-09-30(万方平台首次上网日期,不代表论文的发表时间)

共7页

104-109,120

相关文献
评论
暂无封面信息
查看本期封面目录

森林工程

1006-8023

23-1388/S

38

2022,38(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn