基于GA-ELM及遗传算法的注塑件成型工艺优化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于GA-ELM及遗传算法的注塑件成型工艺优化

引用
以某电器扣盖壳体注塑成型工艺参数优化为例,对正交试验结果进行极差分析,得到各工艺参数对塑件翘曲变形量的影响程度顺序为保压时间>模具温度>注射时间>熔体温度>保压压力>冷却时间.利用遗传算法优化后的极限学习机网络模型(GA-ELM)预测该塑件的翘曲变形量,得到训练好的GA-ELM模型可以很好反映6个工艺参数与翘曲变形量之间的非线性耦合关系,利用遗传算法强大寻优能力在训练好的GA-ELM网络模型中寻找较优的工艺参数.通过对比分析ELM与GA-ELM网络预测模型可知,ELM网络模型的R2为0.67032,GA-ELM网络模型的R2为0.99107,利用遗传算法优化得到的ELM网络预测系统与直接使用ELM网络预测系统相比,有较高的预测精度及稳定性.GA-ELM-GA优化后的翘曲变形量及收缩不均引起的变形量与正交试验设计优化结果相比,降低了12.18%,与初始方案的翘曲变形量及收缩不均引起的变形量相比,降低了39.8%.在一定程度上降低了该塑件翘曲变形量,并验证了该优化方法的可行性.

正交试验;极差分析;ELM;GA-ELM;GA-ELM-GA

51

TQ320.66+2;TP391.7

贵州省科技计划;贵州省科技支撑计划

2022-03-16(万方平台首次上网日期,不代表论文的发表时间)

共7页

56-61,66

相关文献
评论
暂无封面信息
查看本期封面目录

塑料

1001-9456

11-2205/TQ

51

2022,51(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn