10.15982/j.issn.2096-9287.2020.20191108001
空间温室灯组件的自适应控制
到目前为止,基于发光二极管(Light Emitting Diodes-based,LED)的照明器被广泛用于除自然光之外的温室植物照明,以及没有自然光的植物工厂.优化人工光照参数,如日光照积分和不同光谱成分的比值,可以显著降低生物生命支持系统(Biological Life Support Systems,BLSS)包括空间温室(Space Greenhouses,SG)中光栽培作物的生产成本.然而,由于缺乏关于窄带辐射引起的生理效应的信息,以及数学描述植物作物对LED照明参数变化的反应的复杂性,LED照明系统的优化一直受到限制.在人工照明的条件下,作物生产者通常力图建立一个恒定于整个生长季节的最佳光照制度.然而,有实验数据表明,随着植物年龄的增加,作物对光照制度的要求会发生变化.基于生物反馈的自适应搜索优化方法是改进作物LED照明参数的潜在途径.描述了建立于生物医学问题研究所(莫斯科,俄罗斯)用于大白菜栽培的基于红色和白色LED光源的自适应照明系统(Adaptive Lighting System,ALS).其自适应控制程序实现了对实时支持最佳植物生长特性的当前照明参数的连续自动搜索.ALS包括一个封闭的生长室,带有基于红色和白色LED灯的光组件(Light Assembly,LA),并配有一个气体二氧化碳分析仪(Gas CO2 Analyzer,GA).每一种发光二极管的光子通量密度(Photosynthetic photon flux density,PPFD)由微处理器(MicroProcessor,MP)中的程序相互独立控制.红外GA定期测量生长室内由作物的表观光合作用(Visible Photosynthesis,VF)引起的CO2浓度下降.MP接收来自遗传算法输出的信号,并计算作物的光合速率,以及当前的光照质量功能值.然后程序比较在当前时刻和上一步得到的优化准则值,并根据选择算法和LED电源电流的新值计算梯度的方向,使优化准则的值朝着正确的方向变化.此外,供电单元为各类型的LED链提供电流,LA变换植物的照明模式.我们用等效系统质量(Equivalent System Mass,ESM)的最小比值作为SG照明质量的标准,该值取决于植物的照明状况.SG单位种植面积等效质量和SG单位耗电量的成本系数在很大程度上取决于航天器设计和空间探测方案.根据文献,基于光子通量密度和作物光效率的等效系统质量估计值已经在一艘用于长期使用的月球基地的空间探测场景,有4名宇航员的航天器中计算出来.为了寻找植物生长过程中的当前最优光照参数,采用了梯度和单纯形算法.采用入射于作物茎尖的整体光子通量密度水平和红色与白色光通量密度的比值(因子X1和X2)作为优化因子.X1的调节范围为200~700μmol/(m2·s),X2的调节范围为0~1.5.通过对照实验比较使用ALS或最佳恒定LED照明时的等效系统质量来评估自适应照明系统的效果.根据月球基地考察的最小ESM准则(1),在植物生长第14~24 d期间对大白菜作物光照进行自适应优化,使得SG等效质量节约了14.9%.具有其它优化准则的类似系统可用于陆生植物工厂.
空间温室;自适应优化;作物生产力;表观光合作用;发光二极管;光谱组成
8
V524.1(航天术)
2021-09-28(万方平台首次上网日期,不代表论文的发表时间)
共12页
433-444