10.3969/j.issn.1004-9037.2011.05.003
基于多微商核函数的SVM话者确认
给出了一种基于多微商核函数(MDK)的结合高斯混合模型(GMM)和支持向量机(SVM)的方法,并应用于SVM文本无关话者确认.从GMM话者语音特征概率分布出发,用多阶微商描述GMM概率分布,将GMM和SVM结合的问题转化为用多阶微商建立SVM话者模型的问题.首先对说话人语音进行基于因子分析的参数域失配补偿,用GMM描述失配补偿后的话者语音特征的概率分布;然后对GMM求多阶微商;最后构建多微商核函数,建立多SVM话者模型.在NIST' 01 2min-1min话者确认数据库上的实验表明,基于多微商棱函数的SVM话者确认系统性能优于基于失配补偿的GMM系统,也比基于失配补偿的Fisher核函数SVM话者系统和基于失配补偿的Kullback-Leibler(KL)距离SVM话者系统有较大的提高.
话者确认、支持向量机、多微商核函数、特征概率分布
26
TP391(计算技术、计算机技术)
2012-02-21(万方平台首次上网日期,不代表论文的发表时间)
共7页
508-514