10.3969/j.issn.1672-7495.2015.03.019
一道错题的剖析与再变
1 错题由来
题 已知Rt△ABC的周长是4+ 4√ 3,斜边上的中线长是2,则S△ABC=____.
学生的解法:
解法1(标准答案):因为Rt△ABC的周长是4+4√3,斜边上的中线长是2,所以斜边长为4,设两个直角边的长为x、y,则x+y=4√3,x2+y2=16,故S△ABC=1/4[(x+y)2-(x2+y2)]=1/4[(4√3)2-16]=8.
解法2:因为Rt△ABC的周长是4+4√3,斜边上的中线长是2,所以斜边长为4,设两个直角边的长为x、y,则x+y=4√3,x2+y2=16,消去y得x2-4√3x+16=0,此时△=(-4√3)2-4×1×16=-12<0,即该方程无解,所以这样的直角三角形不存在,故此题无解.
错题、周长、直角边、解法、直角三角形、标准答案、边长、学生、方程
O1 ;G44
2015-04-27(万方平台首次上网日期,不代表论文的发表时间)
共1页
48