消化道内窥镜图像异常的人工智能诊断方法研究进展
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1674-1242.2020.01.006

消化道内窥镜图像异常的人工智能诊断方法研究进展

引用
随着深度学习的出现,图像处理不再局限于人工提取特征,转而对图像进行端到端的预测,实现了人工智能在图像处理领域的又一历史性飞越.作为人工智能医疗领域的热点应用,内镜图像异常检测能够准确快速地筛选整个消化道的异常,为医生提供诊断帮助.该文围绕消化道图像最为常见的息肉、出血、溃疡等异常,对其智能诊断方法展开研究,并探讨机器学习在消化内镜异常检测的应用现状,最后展望了未来消化道内窥镜病灶智能诊断的研究方向.

消化道内窥镜图像、病灶检测、机器学习、人工智能

41

R445(诊断学)

国家自然科学基金;上海市自然科学基金

2020-05-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

23-27

相关文献
评论
暂无封面信息
查看本期封面目录

生物医学工程学进展

1674-1242

31-1999/R

41

2020,41(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn