基于RBF神经网络结构混合优化的数字识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.2095-5456.2015.03.009

基于RBF神经网络结构混合优化的数字识别

引用
以数字识别为应用背景构建RBF神经网络结构,首先把最近邻聚类算法与k-均值聚类算法应用于RBF神经网络隐层中心个数及中心值的确定中,实现了隐层中心个数与中心值的自适应获取;然后将遗传算法与伪逆法相结合来确定隐层中心宽度及输出权值;最后对混合优化的神经网络与传统的基于中心自组织学习算法优化的网络进行仿真实验.实验中使用未加噪声和添加噪声的数字样本对网络进行测试,与传统优化方法对比结果表明,应用该混合学习算法构建的神经网络具有识别能力强、计算量小的优点.

径向基函数神经网络(RBFNN)、聚类、遗传算法、数字识别

27

TP183(自动化基础理论)

国家自然科学基金资助项目61007003

2015-07-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

214-221

相关文献
评论
暂无封面信息
查看本期封面目录

沈阳大学学报(自然科学版)

2095-5456

21-1583/N

27

2015,27(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn