基于BERT的金融文本情感分析模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12066/j.issn.1007-2861.2308

基于BERT的金融文本情感分析模型

引用
在金融领域,越来越多的投资者选择在互联网平台上发表自己的见解.这些评论文本作为舆情的载体,可以充分反映投资者情绪,影响投资决策和市场走势.情感分析作为自然语言处理(natural language processing,NLP)中重要的分支,为分析海量的金融文本情感类型提供了有效的研究手段.由于特定领域文本的专业性和大标签数据集的不适用性,金融文本的情感分析是对传统情感分析模型的巨大挑战,传统模型在准确率与召回率上表现较差.为了克服这些挑战,针对金融文本的情感分析任务,从词表示模型出发,提出了基于金融领域的全词覆盖与特征增强的 BERT(bidirectional encoder representations from Transformers)预处理模型.

情感分析、词嵌入向量、BERT、词性特征、命名实体识别

29

TP391.1(计算技术、计算机技术)

上海市科委基金资助项目19511105503

2023-04-26(万方平台首次上网日期,不代表论文的发表时间)

共11页

118-128

相关文献
评论
暂无封面信息
查看本期封面目录

上海大学学报(自然科学版)

1007-2861

31-1718/N

29

2023,29(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn