具有优先级的深度确定性策略梯度算法在自动驾驶中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12066/j.issn.1007-2861.2365

具有优先级的深度确定性策略梯度算法在自动驾驶中的应用

引用
深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法在自动驾驶领域中应用广泛,但DDPG算法因采用均匀采样而导致低效率策略比例较高、训练效率低、收敛速度慢等.提出了基于优先级的深度确定性策略梯度(priority-based DDPD,P-DDPG)算法,通过优先级采样代替均匀采样来提升采样利用率、改善探索策略和提高神经网络训练效率,并且提出新的奖励函数作为评价标准.最后,在开源赛车模拟(The Open Racing Car Simulator,TORCS)平台上对P-DDPG算法的性能进行了测试,结果表明相对于DDPG算法,P-DDPG算法的累积奖励在25回合之后就有明显提升而DDPG在100回合之后训练效果才逐渐显现,提升约4倍.P-DDPG算法不仅训练效率提升且收敛速度加快.

自动驾驶、DDPG算法、优先级经验、TORCS

29

TP242.6(自动化技术及设备)

上海市科委重点项目19511102803

2023-04-26(万方平台首次上网日期,不代表论文的发表时间)

共13页

105-117

相关文献
评论
暂无封面信息
查看本期封面目录

上海大学学报(自然科学版)

1007-2861

31-1718/N

29

2023,29(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn