10.12066/j.issn.1007-2861.2422
基于损失加权的实时篮球裁判手势识别系统
为了方便观众更好地在观看比赛直播和录像时理解裁判手势的含义,或帮助录像分析师分析比赛视频,设计了一种实时篮球裁判手势检测与识别系统Yolov5-BR(Yolov5-Basketball Referee).首先,采用目标检测中的Yolov5算法为基础模型,对其边界框的交并比(intersection over union,IoU)损失函数完全交并比(complete intersection over union,CIoU)进行加权处理,增强预测框的鲁棒性;其次,在C3模块后加入注意力机制,产生更具分辨性的特征表示,从而提升网络识别性能;此外,在检测层头部融入自适应特征融合机制,充分利用图像高层语义信息;最后,对目标置信度损失函数进行不对等加权处理,从而提高对小目标检测的鲁棒性.在自制的裁判手势数据集上,Yolov5-BR取得了 95.4%的mAP值,本地视频检测速率为55.5帧/s,外接摄像头分辨率为1 280×960,检测速率为25帧/s.实验结果表明,Yolov5-BR相对于原始模型在检测裁判手势的性能上有所提升,保持了较高的准确率、稳定性与实时性.
目标检测、手势识别、篮球裁判、深度学习、损失函数
29
TP391(计算技术、计算机技术)
国家自然科学基金52107239
2023-04-26(万方平台首次上网日期,不代表论文的发表时间)
共14页
68-81