10.12066/j.issn.1007-2861.2456
抗深度取证的多粒度融合图像修复网络
数字图像的真伪判别是图像安全领域中的基础问题,因数字媒体极易被攻击篡改,针对图像的取证技术得到了广泛的研究.另一方面,对图像篡改反取证技术的研究,不仅追求更逼真的图像篡改操作,也从相反的方向促进了取证技术的发展.图像修复作为基础的图像篡改操作,一直是国内外学者的研究热点.针对被修复篡改后的图像会被深度取证网络取证的问题,提出了一种抗深度取证的多粒度融合图像修复(multi-granularity fusion-based image inpainting network resistant to deep forensics,MGFR)网络.MGFR 网络包括编解码器、多粒度生成模块以及多粒度注意力模块.首先,输入的破损图像被编码器编码成深度特征,深度特征通过多粒度生成模块生成3个不同粒度中间特征;然后,采用多粒度注意力模块来计算不同粒度中间特征之间的相关性并将其融合;最后,融合特征通过解码器生成输出结果.另外,所提出的MGFR网络被重建损失、模式噪声损失、深度取证损失以及对抗损失联合监督.研究结果显示,所提出的MGFR网络在拥有较好的修复性能的同时能成功规避深度取证网络的取证.
多媒体安全、反取证、图像修复、多粒度
29
TP391(计算技术、计算机技术)
国家自然科学基金;国家自然科学基金
2023-04-26(万方平台首次上网日期,不代表论文的发表时间)
共14页
10-23