基于联合对抗训练的鲁棒度量迁移
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12066/j.issn.1007-2861.2460

基于联合对抗训练的鲁棒度量迁移

引用
迁移度量学习旨在从强大且可靠的距离度量中迁移知识来改善目标度量的效果,这些度量往往来自于学习目标相关的任务.现有的迁移度量学习算法仅关注于如何迁移知识,而这些知识容易过拟合到源域中.首先研究如何在源域中训练一个适合于迁移的源域度量,然后设计了一种通用的深度异质迁移算法来进行高效的迁移学习.值得注意的是,将源域度量以联合对抗学习的方式进行训练,再以深度神经网络的方式将其参数化表示并对其进行迁移.迁移中通过表征模仿的方式来学习源域度量中的知识,这种方式允许源域和目标域中的知识来自于异质域.此外,严格限制目标度量网络的大小,使得目标网络更够进行高效的推理计算.在人脸识别数据集上的实验展现了本方法的有效性.

迁移度量学习、深度度量学习、联合对抗训练、异质域

29

TP37(计算技术、计算机技术)

国家重点研发计划;湖北珞珈实验室开放基金资助项目;国家自然科学基金;国家自然科学基金;新加坡国家研究基金资助项目

2023-04-26(万方平台首次上网日期,不代表论文的发表时间)

共9页

1-9

相关文献
评论
暂无封面信息
查看本期封面目录

上海大学学报(自然科学版)

1007-2861

31-1718/N

29

2023,29(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn