基于分层标注的中文嵌套命名实体识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12066/j.issn.1007-2861.2283

基于分层标注的中文嵌套命名实体识别

引用
中文命名实体识别在中文信息处理中扮演着重要的角色.在中文信息文本中,许多命名实体内部包含着嵌套实体.然而,已有研究大多聚焦在非嵌套实体识别,无法充分捕获嵌套实体之间的边界信息.采用分层标注方式进行嵌套命名实体识别(nested named entity recognition,NNER),将每层的实体识别解析为一个单独的任务,并通过Gate过滤机制来促进层级之间的信息交换.利用公开的1998年《人民日报》NNER语料进行了多组实验,验证了模型的有效性.实验结果表明,在不使用外部资源词典信息的情况下,该方法在《人民日报》数据集上的F1值达到了 91.41%,有效提高了中文嵌套命名实体识别的效果.

中文信息处理、分层标注、嵌套命名实体识别、Gate过滤机制

28

TP391.1(计算技术、计算机技术)

上海市科委重点资助项目19511102803

2022-11-08(万方平台首次上网日期,不代表论文的发表时间)

共11页

270-280

相关文献
评论
暂无封面信息
查看本期封面目录

上海大学学报(自然科学版)

1007-2861

31-1718/N

28

2022,28(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn