基于卷积神经网络的多肉植物细粒度图像分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12066/j.issn.1007-2861.2029

基于卷积神经网络的多肉植物细粒度图像分类

引用
多肉植物分类是植物栽培管理中的一项重要任务,通常需使用大型数据集和领域独有的特性.由于没有现成的多肉植物数据集,需收集大量的图片自制数据集.研究了多肉植物的细粒度图像分类.为了识别不同视角、背景、光效和成长阶段的多肉植物,对卷积神经网络AlexNet和GoogLeNet的最后三层进行微调,对原创数据集进行了强监督分类和弱监督分类的测试、训练.实验结果表明,微调GoogLeNet的强监督分类达到了最佳效果,精准率为96.7%.

细粒度图像分类、强监督分类、弱监督分类、卷积神经网络、AlexNet、GoogLeNet、微调

26

TP183(自动化基础理论)

十三五规划重点研究发展计划资助项目2017YFD0400101

2020-05-29(万方平台首次上网日期,不代表论文的发表时间)

共9页

283-291

相关文献
评论
暂无封面信息
查看本期封面目录

上海大学学报(自然科学版)

1007-2861

31-1718/N

26

2020,26(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn