基于深度学习的中文影评情感分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12066/j.issn.1007-2861.2075

基于深度学习的中文影评情感分析

引用
随着社交网络的兴起,更多人选择在网络上发表自己对影视作品的观点,这为影视投资人了解观众对电影的反馈提供了更方便的途径.例如,豆瓣影评中包含了海量用户或积极或消极的情感观点,而分析豆瓣影评的情感倾向能够辅助投资人进行决策,提升作品质量.大量数据分析必须借助计算机技术手段完成,其中情感分析是自然语言处理(natural language processing,NLP)的一个方向,常用来分析判断文本描述的情绪类型,因此也被称为情感倾向分析.为了提高影评情感分类的准确率,设置了多组对比实验来选择最优参数,比较了当以中文字符向量和词向量为输入矩阵时,双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)模型和卷积神经网络(convolutional neural network,CNN)模型对分类准确率的影响.提出了一种以CNN模型为弱分类器的Bagging算法,训练了多个CNN模型,并采用投票法决定最终的分类结果.这种集成的方法减少了单个模型造成的分类偏差,比单一的Bi-LSTM模型的分类准确率提高了5.10%,比单一的CNN模型的分类准确率提高了1.34%.

双向长短期记忆模型、卷积神经网络模型、Bagging算法、词嵌入向量、影评情感分析

24

TP391.12(计算技术、计算机技术)

2018-12-13(万方平台首次上网日期,不代表论文的发表时间)

共10页

703-712

相关文献
评论
暂无封面信息
查看本期封面目录

上海大学学报(自然科学版)

1007-2861

31-1718/N

24

2018,24(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn